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Abstract Denote by T (2k) the set of trees of order 2k with perfect matchings.
GUO [Guo, Linear Algebra Appl. 368:379–385, 2003.] determined the largest value of
Laplacian spectral radii µ(T ) of the trees T in T (2k) and gave the corresponding tree
T in T (2k) whose µ(T ) reaches this largest value. In this paper, we determine the
second to the sixth largest values of µ(T ) of the trees T in T (2k) and also give the
corresponding trees T in T (2k) whose µ(T ) reach these values.

Keywords Tree · Perfect matching · Laplacian spectral radius

1 Introduction

In this paper, all the graphs are finite, undirected and have no loops or multiple edges.
Let G be a graph with vertex set V (G)= {v1, v2, . . . , vn} and edge set E(G)= {e1, e2,

. . . , em}. When vi and v j are endpoints of an edge e, we write e = viv j . Denote the
set of all the neighbors of a vertex v in G by NG(v) and the degree of v by dG(v), or
simply N (v) and d(v) for convenience.

Let D(G) = diag(d(v1), d(v2), . . . , d(vn)) be the diagonal matrix of vertex
degrees. The Laplacian matrix L(G) of G is defined by L(G) = D(G) − A(G),
where A(G) is the (0,1)-adjacency matrix of G. In this paper, the characteristic poly-
nomial det(x I − L(G)) is denoted by �(G; x), or simply �(G). It is well known that
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L(G) is positive semi-definite, symmetric and singular. We denote the i th eigenvalue
of L(G) by µi (G) and order them in non-increasing order, i.e.,

µ1(G) ≥ µ2(G) ≥ · · · ≥ µn−1(G) ≥ µn(G).

The eigenvalue µ1(G) is called the Laplacian spectral radius of G, denoted by µ(G).
Eichinger et al. [3] showed that the eigenvalues of the Laplacian matrix of a molec-

ular graph determine the distribution function of the so-called radius of gyration of
the molecule, and that the non-zero eigenvalues and their eigenvectors can be used
efficiently to compute the scattering functions for Gaussian molecules (see [11]).

Two distinct edges in a graph G are independent if they are not incident with a
common vertex in G. A set of pairwise independent edges of G is called a matching
of G. A matching M that satisfies 2|M | = |V (G)| is called a perfect matching (it is
pointed out in [8] that every perfect matching of a HÜCKEL graph is in a one-to-one
correspondence with a HÜCKEL structure). Let

T (2k) = {T | T is a tree of order 2k with a perfect matching}. (1.1)

In chemical graph theory, a tree with a perfect matching can be used to represent
a certain hydrocarbon molecule (see [13]), so people are interested in the study of
the eigenvalues of the adjacency matrices, as well as the eigenvalues of the Laplacian
matrices of the trees in T (2k). In [14] and [2], the first seven trees in T (2k) with the
largest spectral radii of the adjacency matrices were determined. And in [10] the larg-
est eigenvalues of the adjacency matrices of trees in T (2k) were studied. In [12], the
eigenvalues of the Laplacian matrices of the trees in T (2k) were studied, and the trees
in T (2k) with the largest algebraic connectivity (i.e., the second smallest eigenvalue
of the Laplacian matrix) were determined. In [1], some sufficient conditions for the
existence of a perfect matching in a graph in terms of the eigenvalues of the Laplacian
matrix were given. In [5], the largest value of the Laplacian spectral radii of the trees
in T (2k) together with the corresponding extremal tree in T (2k) were determined. In
this paper, we determine the second to the sixth largest values of the Laplacian spectral
radii µ(T ) of the trees T in T (2k) together with the corresponding trees T in T (2k)

whose Laplacian spectral radii reach these values.
Let S1

k = K1,k−1 and S2
k , S3

k , S4
k be the following trees of order k as shown in Fig. 1.

For any tree H of order k, let C(H) be the tree of order 2k obtained from H by
adding a new pendant edge at each vertex of H . It is easy to see that C(H) has k
pendant vertices and has a perfect matching.

Fig. 1 The trees S2
k , S3

k and S4
k (of order k)
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Fig. 2 The trees T (1, k − 2) and T (1, 0, k − 3) ( of order 2k)

Let T3 and T4 be the two trees of order 2k as shown in Fig. 2. Then it is easy to
see that both T3 and T4 have perfect matchings. T3 and T4 will also be denoted by
T (1, k − 2) and T (1, 0, k − 3) later in Sect. 4 and Sect. 5, respectively.

The main result of this paper is the following theorem, which will be proved in
Sect. 7.

Theorem 7.1 Let T1 = C(K1,k−1), T2 = C(S2
k ), T3 (see Fig. 2), T4 (see Fig. 2), T5 =

C(S3
k ) and T6 = C(S4

k ) be the six trees in T (2k) as defined above. Let λ1( fi ) be the
largest (real) root of the equation fi (x) = 0 (i = 2, 3, . . . , 6) , where

f2(x) = x6 − (k + 8)x5 + (8k + 20)x4 − (21k + 16)x3

+(22k − 2)x2 − (9k − 4)x + k, (1.2)

f3(x) = x4 − (k + 5)x3 + 5(k + 1)x2 − 2(3k − 1)x + k, (1.3)

f4(x) = x6 − (k + 8)x5 + (8k + 21)x4 − (22k + 18)x3

+(25k − 4)x2 − (11k − 8)x + k, (1.4)

f5(x) = x6 − (k + 8)x5 + (9k + 15)x4 − (25k − 4)x3

+(27k − 27)x2 − (11k − 14)x + k, (1.5)

f6(x) = x6 − (k + 7)x5 + (8k + 12)x4 − (21k − 4)x3

+(22k − 21)x2 − (9k − 10)x + k. (1.6)

Then for k ≥ 6, we have

(1) µ(Ti ) = λ1( fi ) for i = 2, 3, . . . , 6.

(2) µ(T1) > µ(T2) > µ(T3) > µ(T4) > µ(T5) > µ(T6). (1.7)

(3) For any tree T ∈ T (2k)\{T1, T2, T3, T4, T5, T6}, we have

µ(T ) < µ(T6). (1.8)
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2 A basic comparison method

It is well known that if a tree T has a perfect matching, then this matching is unique,
and is usually denoted by M(T ) (or simply M). It is easy to see that in this case, dif-
ferent pendant vertices of T will be adjacent to different (non-pendant) vertices of T ,
and each pendant edge of T is in the perfect matching M(T ).

Let m1 = m1(T ) be the number of pendant vertices of T . If T ∈ T (2k) (has a
perfect matching), then m1 is equal to the number of pendant edges in M(T ), and thus
the number of non-pendant edges in M(T ) is just equal to k − m1.

Let m12 = m12(T ) be the number of such pendant vertices of a tree T whose
neighbor is a vertex of degree 2. Obviously we have m12(T ) ≤ m1(T ).

Let B(G) = D(G)+ A(G), and ρ(B(G)) be the largest eigenvalue of the nonneg-
ative symmetric matrix B(G). It is obvious that

B(G) = |D(G) − A(G)| = |L(G)|,

where |Q| denotes the (entrywise) absolute value of a matrix Q.

Lemma 2.1 [17] Let G be a graph. Then µ(G) ≤ ρ(B(G)). Moreover, if G is con-
nected, then equality holds if and only if G is a bipartite graph.

The following Theorem 2.1 is a generalization of a comparison theorem given in
[9] (Theorem 2.1 ) and in [7] (Theorem 3.8), which will be a basic comparison method
used in this paper.

Theorem 2.1 Let G be a connected graph and u, v1, v2, . . . , vr be vertices of G.
Suppose V1, V2, . . . , Vr are pairwise disjoint vertex subsets of G, which are not all
empty, and

Vi = {vi1, vi2, . . . , viki } ⊆ N (vi )\(N (u) ∪ {u}) (i = 1, 2, . . . , r). (2.1)

Let G ′ be the graph with V (G ′) = V (G) and

E(G ′) =
(

E(G)\
r⋃

i=1

{vivi1, . . . , viviki }
) ⋃(

r⋃
i=1

{uvi1, . . . , uviki }
)

. (2.2)

Let X be the unit (positive) eigenvector of the nonnegative irreducible (also symmetric)
matrix B(G) corresponding to its eigenvalue ρ(B(G)). Suppose we have

123



J Math Chem (2009) 46:65–85 69

(1) Both G ′ and G are bipartite graphs,
(2) xu ≥ max{xv1 , xv2 , . . . , xvr }, where xu denotes the coordinate of X correspond-

ing to the vertex u.

Then we have µ(G) < µ(G ′).

Proof From Lemma 2.1 and the hypothesis (1), we know that µ(G) = ρ(B(G)) and
µ(G ′) = ρ(B(G ′)). From the well-known results of real symmetric matrices in linear
algebra, we have

ρ(B(G)) = X T B(G)X and ρ(B(G ′)) ≥ X T B(G ′)X.

So we have

ρ(B(G ′)) − ρ(B(G)) ≥ X T B(G ′)X − X T B(G)X
= X T

(
B(G ′) − B(G)

)
X

=
r∑

i=1

(
ki∑

j=1

[
(xu + xvi j )

2 − (xv + xvi j )
2
])

≥ 0.

(2.3)

Next we want to show that the strict inequality holds in (2.3). Namely, we want to
show that ρ(B(G ′))−ρ(B(G)) > 0. Suppose not, then all the equalities hold in (2.3).
In particular, we have

ρ(B(G)) − ρ(B(G ′)) = X T B(G ′)X − X T B(G)X = 0,

but ρ(B(G)) = X T B(G)X , so we have

ρ(B(G ′)) = ρ(B(G)) = X T B(G)X = X T B(G ′)X,

which implies that X is also an eigenvector of B(G ′) corresponding to ρ(B(G ′)),
namely we also have B(G ′)X = ρ(B(G ′))X . Thus

(
B(G ′) − B(G)

)
X = ρ(B(G ′))X − ρ(B(G))X = 0. (2.4)

On the other hand, we have

(
(B(G ′) − B(G))X

)
u =

(
r∑

i=1

ki

)
xu +

r∑
i=1

⎛
⎝ ki∑

j=1

xvi j

⎞
⎠ > 0.

This contradicts (2.4). ��
Remark In this paper, we will mostly use the special case r = 1 of Theorem 2.1,
which is just the result in [9] and [7].
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Now we define the following subsets of trees in T (2k).

Tq(2k) = {T ∈ T (2k) | m1(T ) = q} (q = 2, 3, . . . , k) . (2.5)

The following theorem is also useful in the comparison of Laplacian spectral radii
of the trees in T (2k).

Theorem 2.2 Let T ∈ Tq(2k) with q ≤ k − 1. Then there exists T ′ ∈ Tq+1(2k) with
m12(T ′) = m12(T ) such that µ(T ) < µ(T ′).

Proof Since m1(T ) = q ≤ k −1, there exists some edge e = uv in the perfect match-
ing M of T such that both u and v are non-pendant vertices. Let X be the unit positive
eigenvector of B(T ) corresponding to ρ(B(T )) (where B(T ) = D(T )+ A(T )). With-
out loss of generality, we may assume that xu ≥ xv (otherwise we can exchange u and
v). Now using Theorem 2.1 on T in the special case r = 1, v1 = v and V1 = N (v)\{u}.
We obtain a tree T ′ of order 2k with µ(T ) < µ(T ′). Also, it is easy to verify that T ′
has a perfect matching (since e = uv ∈ M(T )) and

dT ′(v) = 1, dT ′(u) ≥ 3, dT ′(w) = dT (w) for all w 	∈ {u, v}. (2.6)

It follows from (2.6) that m1(T ′) = m1(T ) + 1 = q + 1 (thus T ′ ∈ Tq+1(2k)) and
m12(T ′) = m12(T ). ��

3 Ordering trees in T k(2k)

In this section, we first determine the structure of the trees in the class Tk(2k). Then we
use this structure to determine the first four trees in Tk(2k) with the largest Laplacian
spectral radii. We also compare the Laplacian spectral radii of the fourth tree in Tk(2k)

with some other classes of trees in T (2k).
Recall that if H is a tree of order k, then C(H) is the tree of order 2k obtained from

H by adding a new pendant edge at each vertex of H .

Lemma 3.1 T ∈ Tk(2k) if and only if there exists a tree H of order k such that T =
C(H).

Proof The sufficiency follows easily from the definition of C(H). For necessity, sup-
pose T ∈ Tk(2k), let H be the tree of order k obtained from T by deleting its k pendant
vertices. Then we can verify that T = C(H), since T has a perfect matching. ��

The next lemma gives explicit relations between the Laplacian spectral radii of the
trees H and C(H).

Lemma 3.2 Let T ∈ Tk(2k) and T = C(H), where H is a tree of order k. Then we
have

(1) �(T ; x) = (x − 1)k �
(

H ; x − 1 − 1
x − 1

)
for x 	= 1.

(2) µ(T ) = 1
2

(
µ(H) + 2 + √

µ2(H) + 4
)

.
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Proof (1) By labelling the vertices of T properly, we can get the following relation
between L(T ) and L(H),

L(T ) =
(

L(H) + I −I
−I I

)
,

where I is the identity matrix of order k. Then

�(T ; x) = det

(
(x − 1)I − L(H) I

I (x − 1)I

)
.

Notice that for x 	= 1, we have

(
(x − 1)I − L(H) I

I (x − 1)I

) (
I 0

− 1
x−1 I I

)

=
((

x − 1 − 1
x−1

)
I − L(H) I

0 (x − 1)I

)
.

Take the determinants for both sides, we get the desired result.
(2) From (1) and using

�(H ; y) =
k∏

i=1

[y − µi (H)] ,

we have

�(T ; x) =
k∏

i=1

[
(x − 1)2 − µi (H)(x − 1) − 1

]
.

So we can see that µ(T ) is the larger root of the equation

(x − 1)2 − µ(H)(x − 1) − 1 = 0.

Namely,

µ(T ) = 1

2

(
µ(H) + 2 +

√
µ2(H) + 4

)
.

��
The following result follows immediately from Lemma 3.2.
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Corollary 3.1 Let H1, H2 be two trees with µ(H1) > µ(H2). Then

µ(C(H1)) > µ(C(H2)).

Let Tk be the set of trees of order k. In [5] and [16], the first four trees in Tk

with the largest values of Laplacian spectral radii were determined. They are S1
k =

K1,k−1, S2
k , S3

k and S4
k (see Fig. 1).

Actually, in [5] and [16], it is proved that if k ≥ 6 and T ∈ Tk\{K1,k−1, S2
k ,

S3
k , S4

k }, then

k = µ(K1,k−1) > µ(S2
k ) > µ(S3

k ) > µ(S4
k ) > µ(T ). (3.1)

From (3.1) and Corollary 3.1, we immediately have the following result.

Lemma 3.3 If k ≥ 6, then

(1) µ(C(K1,k−1)) > µ(C(S2
k )) > µ(C(S3

k )) > µ(C(S4
k )).

(2) If T ∈ Tk(2k)\{C(K1,k−1), C(S2
k ), C(S3

k ), C(S4
k )}, then µ(T ) < µ(C(S4

k )).

From Lemma 3.2 andµ(K1,k−1)= k, we haveµ(C(K1,k−1))= (k+2+
√

k2 + 4)/2.
So using Theorem 2.2 and Lemma 3.3, we can easily get the following result.

Corollary 3.2 [5] Let T ∈ T (2k) for k ≥ 1. Then

µ(T ) ≤ k + 2 +
√

k2 + 4

2
,

with equality if and only if T = C(K1,k−1).

If v ∈ V (G), let Lv(G) be the principal sub-matrix of L(G) obtained by deleting
the row and column corresponding to the vertex v. The following two results (Lemma
3.4, 3.5) from [6] and [4], respectively, will play important roles in the proofs of our
later results.

Lemma 3.4 [6] Let G = G1u : vG2 be the graph obtained by joining the vertex u
of the graph G1 to the vertex v of the graph G2 by an edge, where G1 and G2 are
disjoint. Then

�(L(G))=�(L(G1))�(L(G2)) − �(L(G1))�(Lv(G2)) − �(L(G2))�(Lu(G1)).

Lemma 3.5 [4] Let G be a connected graph of order n with at least one edge, then
µ(G) ≥ �(G)+1, where �(G) is the maximum degree of the graph G, with equality
if and only if �(G) = n − 1.

From the above discussions, we already know that the first four trees in the set
Tk(2k) with the largest Laplacian spectral radii are C(K1,k−1), C(S2

k ), C(S3
k ) and

C(S4
k ). Also µ(C(K1,k−1)) = (k +2 +

√
k2 + 4)/2. The next lemma gives the values

of µ(C(S2
k )), µ(C(S3

k )) and µ(C(S4
k )) as the largest roots of certain polynomials.
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Lemma 3.6 If k ≥ 6, then µ(Ti ) = λ1( fi ) for i = 2, 5, 6 , where T2 = C(S2
k ), T5 =

C(S3
k ), T6 = C(S4

k ), and

f2(x) = x6 − (k + 8)x5 + (8k + 20)x4 − (21k + 16)x3

+(22k − 2)x2 − (9k − 4)x + k, (1.2)

f5(x) = x6 − (k + 8)x5 + (9k + 15)x4 − (25k − 4)x3

+(27k − 27)x2 − (11k − 14)x + k, (1.5)

f6(x) = x6 − (k + 7)x5 + (8k + 12)x4 − (21k − 4)x3

+(22k − 21)x2 − (9k − 10)x + k. (1.6)

Proof Using Lemma 3.4, we have

�(T2; x) = x(x − 2)(x2 − 3x + 1)k−4 f2(x), (3.2)

�(T5; x) = x(x − 2)(x2 − 3x + 1)k−4 f5(x), (3.3)

�(T6; x) = x(x − 2)(x2 − 3x + 1)k−6(x4 − 7x3 + 14x2 − 8x + 1) f6(x). (3.4)

From Lemma 3.5, we know µ(T2)> k ≥ 6, µ(T5)> k−1 ≥ 5, and µ(T6)> k−1 ≥ 5.
Also, the largest root of the following polynomial

x4 − 7x3 + 14x2 − 8x + 1 = x(x − 1)(x − 2)(x − 4) + 1

is less than 4. So we conclude that µ(Ti ) is the largest root of fi (x) = 0, namely,
µ(Ti ) = λ1( fi ) for i = 2, 5, 6 . ��

One of our main goals in the later sections 4–7 of this paper is to prove (1.8),
namely, µ(T ) < µ(C(S4

k )) for all T ∈ T (2k)\{T1, T2, T3, T4, T5, T6}. From Lemma
3.3, we already know that µ(T ) < µ(C(S4

k )) for T ∈ Tk(2k)\{T1, T2, T5, T6}. Next
we will show in Lemma 3.7 that all T ∈ T (2k)\{C(S4

k )} with m12(T ) ≤ k − 3 satisfy
µ(T ) < µ(C(S4

k )).

Lemma 3.7 If T ∈ T (2k)\{C(S4
k )} with m12(T ) ≤ k − 3, then µ(T ) < µ(C(S4

k )).

Proof By using Theorem 2.2 several times, we can obtain a tree T ′ ∈ Tk(2k) with
m12(T ′) = m12(T ) ≤ k − 3 such that

µ(T ) ≤ µ(T ′). (3.5)

Now m12(T ′) ≤ k − 3 implies that T ′ ∈ Tk(2k)\{C(K1,k−1), C(S2
k ), C(S3

k )}.
So from Lemma 3.3 we have

µ(T ′) ≤ µ(C(S4
k )). (3.6)
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Since T 	= C(S4
k ), we can see that T 	= T ′ or T ′ 	= C(S4

k ) holds. So at least one strict
inequality in (3.5) and (3.6) holds. Thus µ(T ) < µ(C(S4

k )). ��
Corollary 3.3 If T ∈ Tq(2k) with q ≤ k − 3, then µ(T ) < µ(C(S4

k )).

Proof The result follows from the fact that m12(T ) ≤ m1(T ) = q ≤ k − 3 and
Lemma 3.7. ��

From the above results we see that in order to prove (1.8), namely, µ(T ) < µ(C(S4
k ))

for all T ∈ T (2k)\{T1, T2, T3, T4, T5, T6}, we are only left the following three classes
of trees in T (2k) to be considered.

Class (C1) : The trees in Tk−1(2k) with m12(T ) = k − 1.
Class (C2) : The trees in Tk−1(2k) with m12(T ) = k − 2.
Class (C3) : The trees in Tk−2(2k) with m12(T ) = k − 2.

In the following, we will consider Class (C1) in Sect. 4, Class (C2) in Sect. 5 and
Class (C3) in Sect. 6.

4 The trees T in Tk−1(2k) with m12(T ) = k − 1

In this section, we first determine the structure of the trees in Class (C1). Then we
give a complete ordering of all the trees in Class (C1) according to their Laplacian
spectral radii by using the basic comparison method given in Theorem 2.1. We then
show that all the trees in Class (C1), except the first one, satisfy µ(T ) < µ(C(S4

k )).
Let T (i, j) be a tree of order 2k obtained from P2 by attaching i new paths of length

2 to one vertex of P2 and attaching j new paths of length 2 to the other vertex of P2,
where 1 ≤ i ≤ j, i + j = k − 1 (see Fig. 3).

Recall that in Sect. 1 (Fig. 2), we have denoted the tree T (1, k − 2) by T3.
The tree which is obtained from P2 by attaching i new pendant edges at one vertex

of P2 and attaching j new pendant edges at the other vertex of P2 is called a double
star graph, and is denoted S(i, j).

Lemma 4.1 T ∈ Tk−1(2k) with m12(T ) = k − 1 if and only if T = T (i, j) for some
1 ≤ i ≤ j, i + j = k − 1.

Proof The sufficiency part is obvious. We now consider the necessity.
Since m1(T ) = k − 1 and m12(T ) = k − 1, we may write

M(T ) = {uv, x1 y1, x2 y2, . . . , xk−1 yk−1}

Fig. 3 The tree T (i, j) (of order 2k)
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with d(u) ≥ 2, d(v) ≥ 2, d(xt ) = 1 and d(yt ) = 2 for t = 1, 2, . . . , k − 1. Let
G = T − {x1, x2, . . . , xk−1}, then G is a sub-tree of T of order k + 1. Furthermore,
uv ∈ E(G), dG(u) ≥ 2, dG(v) ≥ 2, and dG(yt ) = 1 for t = 1, 2, . . . , k − 1. So we
can see that G = S(i, j) with 1 ≤ i ≤ j, i + j = k − 1. Thus T = T (i, j). ��
Lemma 4.2 If 1 ≤ i < j ≤ 
k − 1

2 �, then we have

µ(T (i, k − 1 − i)) > µ(T ( j, k − 1 − j)).

Proof Let T = T ( j, k−1− j) and u, v be the two non-pendant vertices of T which are
not adjacent to any pendant vertices. Let N (u)= {u1, u2, . . . , u j , v}, N (v)= {v1, v2
. . . , vk−1− j , u}. Let X be the unit positive eigenvector of B(T ) corresponding to
ρ(B(T )) (where B(T ) = D(T ) + A(T ) as defined in Sect. 2). By hypothesis, we
have k − 1 − j ≥ j > i . We distinguish the following cases.

Case 1. xu ≥ xv .
Let t = k − 1 − j − i ≥ 1. Now using Theorem 2.1 on T to take

T ′ = T − {vv1, vv2, . . . , vvt } + {uv1, uv2, . . . , uvt }.

Then we have T ′ = T (i, k − 1 − i) and µ(T ) < µ(T ′).
Case 2. xv > xu .
Let s = j − i ≥ 1. Also using Theorem 2.1 on T to take

T ′ = T − {uu1, uu2, . . . , uus} + {vu1, vu2, . . . , vus}.

Then we have T ′ = T (i, k − 1 − i) and µ(T ) < µ(T ′). ��
Lemma 4.3 µ(T (2, k − 3)) < µ(C(S4

k )) for k ≥ 6.

Proof By direct calculations, we have

�(T (2, k − 3); x) = x(x − 2)(x2 − 3x + 1)k−3g(x),

where

g(x) = x4 − (k + 5)x3 + (6k + 1)x2 − (8k − 10)x + k.

Furthermore, we can see that µ(T (2, k − 3)) is the largest root of g(x) = 0. From
Lemma 3.6, we get µ(C(S4

k )) = λ1( f6), where

f6(x) = x6 − (k + 7)x5 + (8k + 12)x4 − (21k − 4)x3

+(22k − 21)x2 − (9k − 10)x + k. (1.6)

Let

h(x) = x2 − (k + 2)x + k. (4.1)
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Then we can verify that

f6(x) = (x − 1)2g(x) + xh(x). (4.2)

Let µ(T (2, k − 3)) = a. By Lemma 3.5 and Corollary 3.2, we have

k + 2 −
√

k2 + 4

2
< 1 < a < µ(C(K1,k−1)) = k + 2 +

√
k2 + 4

2
.

So from (4.1) we have h(a) < 0. It follows from (4.2) that f6(a) < 0. So µ(C(S4
k )) =

λ1( f6) > a = µ(T (2, k − 3)). ��
Combining Lemma 4.1, 4.2 and 4.3, we see that all the trees in Class (C1) except

T3 = T (1, k − 2) satisfy µ(T ) < µ(C(S4
k )).

5 The trees T in Tk−1(2k) with m12(T ) = k − 2

In this section, we first determine the structure of the trees in Class (C2) (namely, the
trees in Tk−1(2k) with m12(T ) = k − 2.) Then we use this structure to show that all
the trees in Class (C2) , except the tree T4, satisfy µ(T ) < µ(C(S4

k )).
Let T (�1, �2, �3) be a tree of order 2k obtained from P3 : u v w by attaching �1

new paths of length 2 to the vertex u, attaching �2 new paths of length 2 to the vertex
v and attaching �3 new paths of length 2 and one pendant edge to the vertex w, where
�1 ≥ 1, �3 ≥ 1 and �1 + �2 + �3 = k − 2 (see Fig. 4).

Recall that in Sect. 1 (Fig. 2), we have denoted the tree T (1, 0, k − 3) by T4.

Lemma 5.1 T ∈ Tk−1(2k) with m12(T ) = k − 2 if and only if T = T (�1, �2, �3) for
some �1 ≥ 1, �3 ≥ 1 and �1 + �2 + �3 = k − 2.

Proof The sufficiency part is obvious. Now we consider the necessity.
Since m1(T ) = k − 1 and m12(T ) = k − 2, we may write

M(T ) = {uv, x1 y1, x2 y2, . . . , xk−1 yk−1}

with d(u) ≥ 2, d(v) ≥ 2, d(xt ) = 1 for t = 1, 2, . . . , k − 1, d(yt ) = 2 for t =
1, 2, . . . , k − 2, and d(yk−1) ≥ 3.

Let G = T −{x1, x2, . . . , xk−1}. Then G is a sub-tree of T of order k + 1. Further-
more, G contains exactly 3 vertices which are non-pendant vertices, that is u, v, yk−1.

Fig. 4 The tree T (�1, �2, �3) (of order 2k)
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Since G − {y1, y2, . . . , yk−2} is also a tree (of order 3), yk−1 is adjacent to u or v, but
yk−1 can not be adjacent to both u and v, since uv ∈ E(T ). Without loss of generality,
we assume yk−1 is adjacent to v. Since dT (yk−1) ≥ 3, yk−1 is adjacent to at least one
of {y1, y2, . . . , yk−2}. Let

{y1, y2, . . . , yk−2} = Y1∪̇Y2∪̇Y3,

and �t = |Yt | for t = 1, 2, 3, where the vertices in Y1 are adjacent to u, the vertices
in Y2 are adjacent to v, and the vertices in Y3 are adjacent to yk−1. From the above
discussions, we conclude that T = T (�1, �2, �3) with �1 + �2 + �3 = k − 2. Further-
more, �1 ≥ 1 follows from d(u) ≥ 2, and �3 ≥ 1 follows from Y3 	= ∅. ��

Let T4 = T (1, 0, k − 3) as in Sect. 1, and let

G1 = T (k − 3, 0, 1), G2 = T (1, k − 4, 1),

G3 = T (2, 0, k − 4), G4 = T (1, 1, k − 4).

Lemma 5.2 If T = T (�1, �2, �3) with �1 ≥ 1, �3 ≥ 1, �1 + �2 + �3 = k − 2, and
T 	∈ {G1, G2, G3, G4, T4}, then µ(T ) < max{µ(G1), µ(G2), µ(G3), µ(G4)}.
Proof Let u, v andw be three vertices of T as shown in Fig. 4, and N (u) = {u1, u2, . . . ,

u�1, v}, N (v) = {v1, v2, . . . , v�2 , u, w}, N (w) = {w1, w2, . . . , w�3 , v, w′}. Let X be
the unit positive eigenvector of B(T ) corresponding to ρ(B(T )) (where B(T ) =
D(T ) + A(T ) as defined in Sect. 2). We distinguish the following cases.

Case 1. max{xu, xv, xw} = xu .
Take

T ′ = T − {vv1, vv2, . . . , vv�2} − {ww2, ww3, . . . , ww�3}
+{uv1, uv2, . . . , uv�2} + {uw2, uw3, . . . , uw�3}.

Then we have T ′ = G1. Since T 	= G1, we have µ(T ) < µ(T ′) by Theorem 2.1.
So µ(T ) < µ(G1).

Case 2. max{xu, xv, xw} = xv .
Take

T ′ = T − {uu2, uu3, . . . , uu�1} − {ww2, ww3, . . . , ww�3}
+{vu2, vu3, . . . , vu�1} + {vw2, vw3, . . . , vw�3}.

Then we have T ′ = G2. Since T 	= G2, we have µ(T ) < µ(T ′) by Theorem 2.1.
So µ(T ) < µ(G2).

Case 3. max{xu, xv, xw} = xw.
Subcase 3.1. �1 ≥ 2.
Take

T ′ = T − {uu3, uu4, . . . , uu�1} − {vv1, vv2, . . . , vv�2}
+{wu3, wu4, . . . , wu�1} + {wv1, wv2, . . . , wv�2}.

123



78 J Math Chem (2009) 46:65–85

Then we have T ′ = G3. Since T 	= G3, we have µ(T ) < µ(T ′) by Theorem 2.1.
So µ(T ) < µ(G3).

Subcase 3.2. �1 = 1.
Since T 	= T4, we have �2 ≥ 1. Take

T ′ = T − {uu2, uu3, . . . , uu�1} − {vv2, vv3, . . . , vv�2}
+{wu2, wu3, . . . , wu�1} + {wv2, wv3, . . . , wv�2}.

Then we have T ′ = G4. Since T 	= G4, we have µ(T ) < µ(T ′) by Theorem 2.1. So
µ(T ) < µ(G4). ��
Lemma 5.3 If k ≥ 6, and G1, G2, G3, G4 are as above, then we have

(1) µ(G1) < µ(T (2, k − 3)).
(2) µ(G2) < µ(T (2, k − 3)).
(3) µ(G3) < µ(T (2, k − 3)).
(4) µ(G4) < µ(T (2, k − 3)).

Proof By direct calculations using Lemma 3.4, we have

�(G1; x) = x(x − 2)(x2 − 3x + 1)k−4r1(x), (5.1)

�(G2; x) = x(x − 2)(x2 − 3x + 1)k−5r2(x), (5.2)

�(G3; x) = x(x − 2)(x2 − 3x + 1)k−4r3(x), (5.3)

�(G4; x) = x(x − 2)(x2 − 3x + 1)k−5r4(x), (5.4)

where

r1(x) = x6 − (k + 8)x5 + (9k + 17)x4 − (27k − 2)x3 + (32k − 32)x2

−(13k − 16)x + k,

r2(x) = x8 − (k + 11)x7 + (12k + 42)x6 − (55k + 57)x5 + (121k − 17)x4

−(132k − 98)x3 + (67k − 60)x2 − (14k − 8)x + k,

r3(x) = x6 − (k + 8)x5 + (9k + 17)x4 − (27k − 2)x3 + (33k − 37)x2

−(15k − 26)x + k,

r4(x) = x8 − (k + 11)x7 + (12k + 42)x6 − (55k + 57)x5 + (122k − 22)x4

−(137k − 123)x3 + (74k − 95)x2 − (16k − 18)x + k.

From (5.1) to (5.4), it is easy to see that µ(Gi ) is the largest root of the equation
ri (x) = 0 for i = 1, 2, 3, 4. Now let

g(x) = x4 − (k + 5)x3 + (6k + 1)x2 − (8k − 10)x + k.
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From the proof of the Lemma 4.3, we know that µ(T (2, k − 3)) is the largest root of
the equation g(x) = 0. By calculations we also have

r1(x) = (x2 − 3x + 1)g(x) + h1(x), where h1(x) = (k − 3)x(x − 2),

r2(x) = (x2 − 3x + 1)2g(x) + h2(x), where h2(x) = x(x − 2)[x2 − (k − 1)x + 1],
r3(x) = (x2 − 3x + 1)g(x) + h3(x), where h3(x) = 2(k − 4)x(x − 2),

r4(x) = (x2 − 3x + 1)2g(x) + h4(x), where h4(x) = (k − 4)x(x − 2)(x2 − 4x + 1).

Notice from Lemma 3.5 that µ(Gi ) ≥ �(Gi ) + 1 ≥ k − 1 ≥ 5, so we can easily see
that hi (µ(Gi )) > 0. So from the above relations and the fact that ri (µ(Gi )) = 0, we
can conclude that g(µ(Gi )) < 0. So we have µ(Gi ) < λ1(g) = µ(T (2, k − 3)) for
i = 1, 2, 3, 4 as desired. ��

Combining Lemma 5.1, 5.2, 5.3, we see that all the trees in Class (C2) except
T4 = T (1, 0, k − 3) satisfy µ(T ) < µ(T (2, k − 3)) < µ(C(S4

k )).

6 The trees T in Tk−2(2k) with m12(T ) = k − 2

In this section, we first determine the structure of the trees in Class (C3) (namely, the
trees in Tk−2(2k) with m12(T ) = k − 2.) Then we use this structure and the compar-
ison method given in Theorem 2.1 together with another useful comparison method
given in Lemma 6.3 to show that all the trees in Class (C3) satisfy µ(T ) < µ(C(S4

k )).
Let T (�1, �2, �3, �4) be a tree of order 2k obtained from P4 : u1 u2 u3 u4 by attach-

ing �i new paths of length 2 to the vertex ui for i = 1, 2, 3, 4, respectively, where
�1 ≥ 1, �4 ≥ 1 and �1 + �2 + �3 + �4 = k − 2 (see Fig. 5). It is easy to see that
T (�1, �2, �3, �4) = T (�4, �3, �2, �1).

Lemma 6.1 T ∈ Tk−2(2k) with m12(T ) = k − 2 if and only if T = T (�1, �2, �3, �4)

for some �1 ≥ 1, �4 ≥ 1 and �1 + �2 + �3 + �4 = k − 2.

Proof The sufficiency is obvious. Now we consider the necessity.
Since m1(T ) = k − 2 and m12(T ) = k − 2, we may write

M(T ) = {u1u2, u3u4, x1 y1, x2 y2, . . . , xk−2 yk−2}

with d(ui ) ≥ 2 for i = 1, 2, 3, 4, d(x j ) = 1 and d(y j ) = 2 for j = 1, 2, . . . , k − 2.

Let G1 = T − {x1, x2, . . . , xk−2}. Then G1 is a sub-tree of T of order k + 2. Further-
more, y1, y2, . . . , yk−2 are pendant vertices of G1. Let G2 = G1 −{y1, y2, . . . , yk−2}.

Fig. 5 The tree T (�1, �2, �3, �4) (of order 2k)
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Fig. 6 The trees H1 and H2 (of order 2k)

It is easy to see that G2 is a tree of order 4 with a perfect matching. Note that P4 is the
unique tree of order 4 with a perfect matching. Then G2 = P4. From this we can easily
get T = T (�1, �2, �3, �4) for some �1 ≥ 1, �4 ≥ 1 and �1 + �2 + �3 + �4 = k − 2. ��

Now let H1 = T (k − 3, 0, 0, 1) and H2 = T (1, 0, k − 4, 1), which are shown in
Fig. 6.

Lemma 6.2 If T = T (�1, �2, �3, �4) with �1 ≥ 1, �4 ≥ 1, �1 + �2 + �3 + �4 = k − 2
and T 	∈ {H1, H2}. Then µ(T ) < max{µ(H1), µ(H2)}.
Proof Let u1, u2, u3 and u4 be the four vertices of T as shown in Fig. 5, and let

N (u1) = {u11, u12, . . . , u1�1 , u2},
N (u2) = {u21, u22, . . . , u2�2 , u1, u3},
N (u3) = {u31, u32, . . . , u3�3 , u2, u4},
N (u4) = {u41, u42, . . . , u4�4 , u3}.

Let X be the unit positive eigenvector of B(T ) corresponding to ρ(B(T )), where
B(T ) = D(T ) + A(T ). We distinguish the following cases.

Case 1. max {xu1 , xu2 , xu3 , xu4} = xu1 or xu4 , say xu1 .
Take

T ′ = T − {u2u21, . . . , u2u2�2} − {u3u31, . . . , u3u3�3} − {u4u42, . . . , u4u4�4}
+{u1u21, . . . , u1u2�2} + {u1u31, . . . , u1u3�3} + {u1u42, . . . , u1u4�4}

Then we have T ′ = H1. Since T 	= H1, we have µ(T ) < µ(T ′) by Theorem 2.1. So
µ(T ) < µ(H1).

Case 2. max {xu1 , xu2 , xu3 , xu4} = xu2 or xu3 , say xu3 .
Take

T ′ = T − {u1u12, . . . , u1u1�1} − {u2u21, . . . , u2u2�2} − {u4u42, . . . , u4u4�4}
+{u3u12, . . . , u3u1�1} + {u3u21, . . . , u3u2�2} + {u3u42, . . . , u3u4�4}

Then we have T ′ = H2. Since T 	= H2, we have µ(T ) < µ(T ′) by Theorem 2.1.
So µ(T ) < µ(H2). ��

The following Lemma 6.3 is also a useful comparison method for Laplacian spectral
radii, which will be used in Lemma 6.4 and later in Lemma 7.2.
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Lemma 6.3 [15] Let Tk,l(u) be the tree obtained from a tree T by attaching two new
paths of length k and l to a vertex u, respectively. If k ≥ l ≥ 1, then µ(Tk+1,l−1(u)) <

µ(Tk,l(u)).

Lemma 6.4 If k ≥ 6, then we have

(1) µ(H1) < µ(T (2, k − 3)).
(2) µ(H2) < µ(T (2, k − 3)).

Proof (1) Let T ∗ be a tree of order 2k − 4 as shown in Fig. 7. Then we have T (2, k −
3)= T ∗

2,2(u) and H1 = T (1, 0, 0, k−3)= T ∗
4,0(u). So by Lemma 6.3 we have µ(H1) <

µ(T (2, k − 3)).
(2) Let X be the unit positive eigenvector of B(H2) corresponding to ρ(B(H2)).

We distinguish the following cases.
Case 1. xu1 ≥ xu4 .
Take T ′ = H2 −{u4u41}+ {u1u41}. Then T ′ = G3 = T (2, 0, k − 4). So µ(H2) <

µ(T ′) = µ(G3) by Theorem 2.1. Furthermore, µ(H2) < µ(T (2, k − 3)) by Lemma
5.3 (3).

Case 2. xu4 > xu1 .
Take T ′ = H2 −{u1u11}+{u4u11}. Then T ′ = T (2, k −3). So µ(H2) < µ(T ′) =

µ(T (2, k − 3)) by Theorem 2.1. ��
Combining Lemma 6.1, 6.2 and 6.4, we can see that all the trees in Class (C3)

satisfy µ(T ) < µ(T (2, k − 3)) < µ(C(S4
k )).

7 Main results

In this section, we will prove our main result. We first give the values of µ(T3) and
µ(T4) (as the largest roots of the equations f3(x) = 0 and f4(x) = 0, respectively).
Then we compare µ(T2), µ(T3), µ(T4) and µ(T5) in Lemma 7.2, 7.3 and 7.4. Finally,
we obtain our main result in Theorem 7.1.

Lemma 7.1 Let T3 = T (1, k −2) and T4 = T (1, 0, k −3) as defined in Sect. 1. Then
we have µ(T3) = λ1( f3), µ(T4) = λ1( f4), where

f3(x) = x4 − (k + 5)x3 + 5(k + 1)x2 − 2(3k − 1)x + k, (1.3)

Fig. 7 The trees T ∗ and G∗
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and

f4(x) = x6 − (k + 8)x5 + (8k + 21)x4 − (22k + 18)x3

+(25k − 4)x2 − (11k − 8)x + k. (1.4)

Proof By direct calculations, we have

�(T3; x) = x(x − 2)(x2 − 3x + 1)k−3 f3(x), (7.1)

�(T4; x) = x(x − 2)(x2 − 3x + 1)k−4 f4(x). (7.2)

From (7.1) and (7.2), it follows easily that µ(Ti ) is the largest root of the equation
fi (x) = 0 for i = 3, 4. ��

Next we use the comparison method given in Lemma 6.3 to compare µ(T4) and
µ(T3).

Lemma 7.2 µ(T4) < µ(T3) for k ≥ 4.

Proof Let G∗ be a tree of order 2k −5 as shown in Fig. 7. Then we have T (1, k −2) =
G∗

3,2(u) and T (1, 0, k − 3) = G∗
4,1(u). So by Lemma 6.3, we have µ(T4) < µ(T3)

for k ≥ 4. ��
Lemma 7.3 µ(T3) < µ(T2) for k ≥ 4.

Proof From Lemma 3.6 and Lemma 7.1, we have µ(Ti ) = λ1( fi ) for i = 2, 3, where

f2(x) = x6 − (k + 8)x5 + (8k + 20)x4 − (21k + 16)x3

+(22k − 2)x2 − (9k − 4)x + k, (1.2)

and

f3(x) = x4 − (k + 5)x3 + 5(k + 1)x2 − 2(3k − 1)x + k. (1.3)

Let

h(x) = x(x − 2)(x2 − kx + 1).

Then it can be easily verified that

f2(x) = (x2 − 3x + 1) f3(x) − h(x).

Note that h(x)> 0 for x ≥ k. Let µ(T3)= a, then from Lemma 3.5 we have a >

�(T3) + 1 = k, so h(a) > 0. It follows that f2(a) = −h(a) < 0, since f3(a) = 0.
So the largest root of f2(x) = 0 is larger than a. Thus µ(T2) = λ1( f2) > µ(T3) as
desired. ��
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Lemma 7.4 µ(T5) < µ(T4) for k ≥ 6.

Proof From Lemma 3.6 and Lemma 7.1, we have µ(Ti ) = λ1( fi ) for i = 4, 5, where

f4(x) = x6 − (k + 8)x5 + (8k + 21)x4 − (22k + 18)x3

+(25k − 4)x2 − (11k − 8)x + k, (1.4)

and

f5(x) = x6 − (k + 8)x5 + (9k + 15)x4 − (25k − 4)x3

+(27k − 27)x2 − (11k − 14)x + k. (1.5)

Let

h(x) = (k − 6)x3 + (−3k + 22)x2 + (2k − 23)x + 6.

Then it can be easily verified that

f5(x) = f4(x) + xh(x). (7.3)

Now

h(x) = (x − 5)
[
(k − 6)x2 + (2k − 8)x + (12k − 63)

]
+ 60k − 309. (7.4)

Let b = µ(T5). Then by Lemma 3.5 we have b > �(T5) + 1 = k − 1 ≥ 5. So
from (7.4) we have h(b) > 0. It follows from (7.3) and the fact that f5(b) = 0 that
f4(b) < 0. Thus we have µ(T4) = λ1( f4) > b = µ(T5) as desired. ��

Now we are ready to obtain our main result.

Theorem 7.1 Let T1 = C(K1,k−1), T2 = C(S2
k ), T3(see Fig. 2), T4(see Fig. 2), T5 =

C(S3
k ) and T6 = C(S4

k ) be the six trees in T (2k) as defined above. Let λ1( fi ) be the
largest (real) root of the equation fi (x) = 0 (i = 2, 3, . . . , 6), where

f2(x) = x6 − (k + 8)x5 + (8k + 20)x4 − (21k + 16)x3

+(22k − 2)x2 − (9k − 4)x + k, (1.2)

f3(x) = x4 − (k + 5)x3 + 5(k + 1)x2 − 2(3k − 1)x + k, (1.3)

f4(x) = x6 − (k + 8)x5 + (8k + 21)x4 − (22k + 18)x3

+(25k − 4)x2 − (11k − 8)x + k, (1.4)
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f5(x) = x6 − (k + 8)x5 + (9k + 15)x4 − (25k − 4)x3

+(27k − 27)x2 − (11k − 14)x + k, (1.5)

f6(x) = x6 − (k + 7)x5 + (8k + 12)x4 − (21k − 4)x3

+(22k − 21)x2 − (9k − 10)x + k. (1.6)

Then for k ≥ 6, we have

(1) µ(Ti ) = λ1( fi ) for i = 2, 3, . . . , 6.

(2)

µ(T1) > µ(T2) > µ(T3) > µ(T4) > µ(T5) > µ(T6). (1.7)

(3) For any tree T ∈ T (2k)\{T1, T2, T3, T4, T5, T6}, we have

µ(T ) < µ(T6). (1.8)

Proof (1) By Lemma 3.6 and Lemma 7.1.
(2) By Lemma 3.3 (1), Lemma 7.2, 7.3 and 7.4.
(3) By Lemma 3.3 (2), Lemma 3.7, Corollary 3.3; Lemma 4.1, 4.2, 4.3; Lemma 5.1,

5.2, 5.3; Lemma 6.1, 6.2 and 6.4. ��
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